STRONG KOSZULNESS OF TORIC RINGS ASSOCIATED WITH STABLE SET POLYTOPES OF TRIVIALLY PERFECT GRAPHS
نویسندگان
چکیده
منابع مشابه
A new characterization of trivially perfect graphs
A graph G is trivially perfect if for every induced subgraph the cardinality of the largest set of pairwise nonadjacent vertices (the stability number) α(G) equals the number of (maximal) cliques m(G). We characterize the trivially perfect graphs in terms of vertex-coloring and we extend some definitions to infinite graphs.
متن کاملOn the linear extension complexity of stable set polytopes for perfect graphs
We study the linear extension complexity of stable set polytopes of perfect graphs. We make use of known structural results permitting to decompose perfect graphs into basic perfect graphs by means of two graph operations: 2-joins and skew partitions. Exploiting the link between extension complexity and the nonnegative rank of an associated slack matrix, we investigate the behavior of the exten...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملProbe threshold and probe trivially perfect graphs
7 An undirected graph G = (V,E) is a probe C graph if its vertex set can be partitioned 8 into two sets, N (non-probes) and P (probes) where N is independent and there 9 exists E′ ⊆ N × N such that G′ = (V,E ∪ E′) is a C graph. In this article we 10 investigate probe threshold and probe trivially perfect graphs and characterise them 11 in terms of certain 2-Sat formulas and in other ways. For t...
متن کاملExtension Complexity of Stable Set Polytopes of Bipartite Graphs
The extension complexity xc(P ) of a polytope P is the minimum number of facets of a polytope that affinely projects to P . Let G be a bipartite graph with n vertices, m edges, and no isolated vertices. Let STAB(G) be the convex hull of the stable sets of G. Since G is perfect, it is easy to see that n 6 xc(STAB(G)) 6 n+m. We improve both of these bounds. For the upper bound, we show that xc(ST...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2014
ISSN: 0219-4988,1793-6829
DOI: 10.1142/s0219498813501387